Electronic Properties of Zigzag Graphene Nanoribbons Studied by TAO-DFT.

نویسندگان

  • Chun-Shian Wu
  • Jeng-Da Chai
چکیده

Accurate prediction of the electronic properties of zigzag graphene nanoribbons (ZGNRs) has been very challenging for conventional electronic structure methods due to the presence of strong static correlation effects. To meet the challenge, we study the singlet-triplet energy gaps, vertical ionization potentials, vertical electron affinities, fundamental gaps, and symmetrized von Neumann entropy (i.e., a measure of polyradical character) of hydrogen-terminated ZGNRs with different widths and lengths using our recently developed thermally-assistedoccupation density functional theory (TAO-DFT) [Chai, J.-D. J. Chem. Phys. 2012, 136, 154104], a very efficient method for the study of large strongly correlated systems. Our results are in good agreement with the available experimental and high-accuracy ab initio data. The ground states of ZGNRs are shown to be singlets for all the widths and lengths investigated. With the increase of ribbon length, the singlet-triplet energy gaps, vertical ionization potentials, and fundamental gaps decrease monotonically, while the vertical electron affinities and symmetrized von Neumann entropy increase monotonically. On the basis of the calculated orbitals and their occupation numbers, the longer ZGNRs are shown to possess increasing polyradical character in their ground states, where the active orbitals are mainly localized at the zigzag edges.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study

The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...

متن کامل

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Electronic and Aromatic properties of Graphene and Nanographenes of various kinds:

Using suitable Density functional theory (DFT) methods and models of various sizes and symmetries, we have obtained the aromaticity pattern of infinite Graphene, which is an intrinsically collective effect, by a process of “spatial” evolution. Using a similar process backwards we obtain the distinct aromaticity pattern(s) of finite nanographenes, graphene dots, antidots, and graphene nanoribbon...

متن کامل

بررسی خواص مغناطیسی ریزساختارهای نانومتری گرافینی و نانوروبان‌های گرافینی زیگزاگ‎

The discovery of graphene and its remarkable electronic and magnetic properties has initiated great research interest in this material. Furthermore, there are many derivatives in these graphene related materials among which graphene nanoribbons and graphene nanofragments are candidates for future carbon-based nanoelectronics and spintronics. Theoretical studies have shown that magnetism can ari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 11 5  شماره 

صفحات  -

تاریخ انتشار 2015